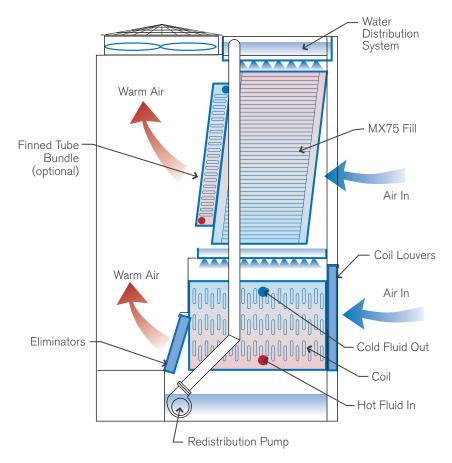

MH fluid cooler

HYBRID DESIGN. HIGHER PERFORMANCE.


MARLEY®

Hybrid Design.

Utilizing a combination of evaporative fill media and prime surface coil(s), the MH Fluid Cooler offers significantly improved performance over conventional closed circuit coolers.

- Process fluid is pumped internally through the coil
- Heat is transferred from the process fluid to the recirculating water as it flows over the outside of the coil tubes
- The heated recirculating water is pumped from the collection basin to the gravity distribution basin
- Evenly distributed over the fill media and coil, a small portion of the recirculating water is evaporated, efficiently rejecting heat to the atmosphere

- Optimum fluid paths maximize heat transfer potential
- High efficiency components minimize footprint
- Evaporative fill media reduces the coil surface area required
- An optional finned coil can be selected to provide dry capacity in cold ambient conditions

- Protect process fluids from contamination
- Combine the functionality of a cooling tower and heat exchanger in one piece of equipment
- Maximize system efficiency by reducing fouling and scaling tendencies
- Reduce system energy and maintenance costs
- Conserve valuable space in equipment rooms
- Provide reliable, efficient, yearround operation

The Right Choice.

The Marley MH Fluid Cooler is one of the most energy efficient closed circuit systems on the market and a great choice for closed loop Industrial and HVAC applications.

Maximum Efficiency

Hybrid design and high efficiency components deliver consistent, reliable cooling with low input power.

Space Saving Footprint

With higher capacity per footprint than conventional closed circuit designs, the MH Fluid cooler is a great fit for applications with space restrictions.

Unmatched Reliability

Heavy duty construction backed by our 5-year mechanical warranty helps keep your process running smoothly year after year.

Certified Performance

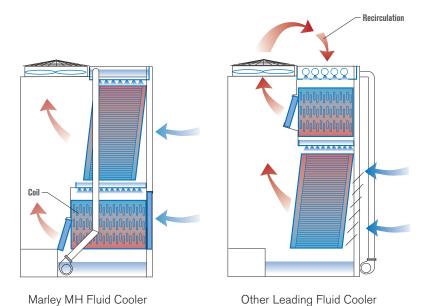
Thermal capacities of standard models are independently certified by the Cooling Technology Institute for performance with water, ethylene glycol solutions and propylene glycol solutions.

Low Sound Operation

Equipped with low-sound fans as standard, the MH Fluid Cooler is suitable for most noise sensitive situations. Multiple fan and attenuation options are available to meet more stringent sound requirements.

Copper Coil Option

Select models are now available with copper coils offering superior corrosion resistance, improved heat transfer, reduced operating weight and numerous other benefits. CTI Certified.


Optional Dry Capability

Models available with an optional extended-surface coil for part-load dry operation in cold ambient conditions.

Higher Performance.

COOLBOOST TECHNOLOGY

- Utilizes high-efficiency components and optimum fluid paths to boost cooling dramatically when compared to forced-draft units with comparable footprint
- Requires up to 35% less process fluid to fill the coil
- Weight is reduced by 15% or more

COIL MATERIAL OPTIONS

Coil materials to suit a variety of application needs including:

- · Hot dip galvanized steel
- Copper
- Series 300 stainless steel

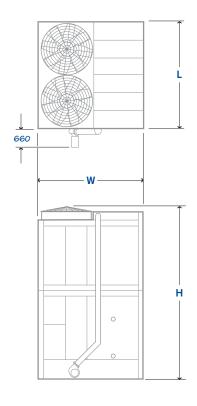
STRATEGIC COIL LOCATION

- Less risk of hot discharge air recirculation
- · Easier to access and clean

NEED EFFICIENT CLOSED-LOOP COOLING?

The MH Fluid cooler provides just that, with unit capacities exceeding ASHRAE Standard 90.1 energy efficiency requirements.

Find the right tower for your application at spxcooling.com/update



Maximum Efficiency.

Single-Flow Models

Models	Tons*	L	W	Н
MHF7101	31 – 80	1854	2540	3937 – 4394
MHF7103	71 – 141	2769	2540	4445 - 5309
MHF7105	92 – 201	3683	2540	4445 - 5309
MHF7107	148 – 309	3683	3632	5309 - 6172
MHF7109	234 – 351	5512	3632	5309 – 5791

^{*} Nominal capacity based on 0.681 m³/hr per ton at 35°C Hot Water, 29.5°C Cold Water, 25.5°C Wet-Bulb. Varies depending on configuration.

Maximum Marley.

Double-Flow Models

Models	Tons*	L	w	н
MHF7111	310 - 528	3632	7264	6553
MHF7113	410 – 628	4242	7874	6553

 $^{^{\}star}$ Nominal capacity based on 0.155 m³/hr per kW at 35°C Hot Water, 29.5°C Cold Water, 25.5°C Wet-Bulb. Varies depending on configuration.

ADDITIONAL MH FLUID COOLER PUBLICATIONS

For further information about the MH Fluid Cooler – including engineering schematics, data, layout requirements and more – download these MHF publications and others at spxcooling.com.

Engineering Data and Specifications

IOM Manual

OTHER SPX COOLING TECHNOLOGIES PRODUCTS

SPX Cooling Technologies offers a full line of industry leading products – with unmatched support and innovation designed to help you get the most out of your cooling process. Take a look at these other Marley products at spxcooling.com.

Marley NC Cooling Tower

Marley MD Cooling Tower

Marley AV Series Cooling Tower

Marley MC Fluid Cooler

SPX COOLING TECHNOLOGIES MALAYSIA SDN BHD

UNIT 505, BLOCK B, PHILEO DAMANSARA 2 NO. 15 JALAN 16/11 OFF JALAN DAMANSARA 46350 PETALING JAYA, MALAYSIA 60 3 7947 7800 | th.my.enquiry@spx.com spxcooling.com

sea_MHF-17 | ISSUED 5/2018
© 2018 SPX COOLING TECHNOLOGIES, INC | ALL RIGHTS RESERVED
In the interest of technological progress, all products
are subject to design and/or material change without notice.

